Trace Ideals and the Gorenstein Property

نویسندگان

چکیده

Let R be a local Noetherian commutative ring. We prove that is an Artinian Gorenstein ring if and only every ideal in trace ideal. discuss when the of module coincides with its double annihilator.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schematic Algebras and the Auslander-Gorenstein Property

Noncommutative algebraic geometry studies a certain quotient category Rqgr of the category of graded R-modules which for commutative R is equivalent to the category of quasi-coherent sheaves by a famous theorem of Serre. For a large class of graded algebras, the so-called schematic algebras, we are able to construct a kind of scheme such that the coherent sheaves on it are equivalent to R-qgr. ...

متن کامل

Good Ideals in Gorenstein Local Rings

Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...

متن کامل

The Auslander-gorenstein Property for Z-algebras

We provide a framework for part of the homological theory of Z-algebras and their generalizations, directed towards analogues of the Auslander-Gorenstein condition and the associated double Ext spectral sequence that are useful for enveloping algebras of Lie algebras and related rings. As an application, we prove the equidimensionality of the characteristic variety of an irreducible representat...

متن کامل

The Lefschetz Property for Componentwise Linear Ideals and Gotzmann Ideals

For standard graded Artinian K-algebras defined by componentwise linear ideals and Gotzmann ideals, we give conditions for the weak Lefschetz property in terms of numerical invariants of the defining ideals.

متن کامل

Gorenstein Algebras, Symmetric Matrices, Self-linked Ideals, and Symbolic Powers

Inspired by recent work in the theory of central projections onto hypersurfaces, we characterize self-linked perfect ideals of grade 2 as those with a Hilbert–Burch matrix that has a maximal symmetric subblock. We also prove that every Gorenstein perfect algebra of grade 1 can be presented, as a module, by a symmetric matrix. Both results are derived from the same elementary lemma about symmetr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2022

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2019.1670195